Skip to main content
Log in

Chemical exchange saturation transfer (CEST) MR technique for in-vivo liver imaging at 3.0 tesla

  • Hepatobiliary-Pancreas
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Purpose

To evaluate Chemical Exchange Saturation Transfer (CEST) MRI for liver imaging at 3.0-T.

Materials and methods

Images were acquired at offsets (n = 41, increment = 0.25 ppm) from −5 to 5 ppm using a TSE sequence with a continuous rectangular saturation pulse. Amide proton transfer-weighted (APTw) and GlycoCEST signals were quantified as the asymmetric magnetization transfer ratio (MTRasym) at 3.5 ppm and the total MTRasym integrated from 0.5 to 1.5 ppm, respectively, from the corrected Z-spectrum. Reproducibility was assessed for rats and humans. Eight rats were devoid of chow for 24 hours and scanned before and after fasting. Eleven rats were scanned before and after one-time CCl4 intoxication.

Results

For reproducibility, rat liver APTw and GlycoCEST measurements had 95 % limits of agreement of −1.49 % to 1.28 % and −0.317 % to 0.345 %. Human liver APTw and GlycoCEST measurements had 95 % limits of agreement of −0.842 % to 0.899 % and −0.344 % to 0.164 %. After 24 hours, fasting rat liver APTw and GlycoCEST signals decreased from 2.38 ± 0.86 % to 0.67 ± 1.12 % and from 0.34 ± 0.26 % to −0.18 ± 0.37 % respectively (p < 0.05). After CCl4 intoxication rat liver APTw and GlycoCEST signals decreased from 2.46 ± 0.48 % to 1.10 ± 0.77 %, and from 0.34 ± 0.23 % to −0.16 ± 0.51 % respectively (p < 0.05).

Conclusion

CEST liver imaging at 3.0-T showed high sensitivity for fasting as well as CCl4 intoxication.

Key Points

CEST MRI of in-vivo liver was demonstrated at clinical 3 T field strength.

After 24-hour fasting, rat liver APTw and GlycoCEST signals decreased significantly.

After CCl4 intoxication both rat liver APTw and GlycoCEST signals decreased significantly.

Good scan–rescan reproducibility of liver CEST MRI was shown in healthy volunteers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Wallace K, Burt AD, Wright MC (2008) Liver fibrosis. Biochem J 411:1–18

    Article  CAS  PubMed  Google Scholar 

  2. Patel K, Shackel NA (2008) Current status of fibrosis markers. Curr Opin Gastroenterol 30:253–259

    Article  Google Scholar 

  3. Anania C, Pacifico L, Ferraro F, Olivero E, Chiesa C (2011) Aspartate transaminase to platelet ratio index (APRI) to assess liver fibrosis in patients with chronic liver disease. Hepat Mon 11:479–480

    PubMed  PubMed Central  Google Scholar 

  4. Tatsumi C, Kudo M, Ueshima K, Kitai S, Takahashi S, Inoue T et al (2008) Noninvasive evaluation of hepatic fibrosis using serum fibrotic markers, transient elastography (FibroScan) and real-time tissue elastography. Intervirology 51:27–33

    Article  CAS  PubMed  Google Scholar 

  5. Sy S, Huang S, Wang YX, Yu J, Ahuja AT, Zhang YT et al (2010) Terahertz spectroscopy of liver cirrhosis: investigating the origin of contrast. Phys Med Biol 55:7587–7596

    Article  PubMed  Google Scholar 

  6. Ligabue G, Besutti G, Scaglioni R, Stentarelli C, Guaraldi G (2013) MR quantitative biomarkers of non-alcoholic fatty liver disease: technical evolutions and future trends. Quant Imaging Med Surg 3:192–195

    PubMed  PubMed Central  Google Scholar 

  7. Janes CH, Lindor KD (1993) Outcome of patients hospitalized for complications after outpatient liver biopsy. Ann Intern Med 118:96–98

    Article  CAS  PubMed  Google Scholar 

  8. Bravo AA, Sheth SG, Chopra S (2001) Liver biopsy. N Engl J Med 344:495–500

    Article  CAS  PubMed  Google Scholar 

  9. Zhou J, Lal B, Wilson DA, Laterra J, van Zijl PCM (2003) Amide proton transfer (APT) contrast for imaging of brain tumors. Magn Reson Med 50:1120–1126

    Article  PubMed  Google Scholar 

  10. Zhou J, Payen J, Wilson DA, Traystman RJ, van Zijl PCM (2003) Using the amide proton signals of intracellular proteins and peptides to detect pH effects in MRI. Nat Med 9:1085–1090

    Article  CAS  PubMed  Google Scholar 

  11. Yuan J, Chen S, King AD, Zhou J, Bhatia KS, Zhang Q et al (2014) Amide proton transfer-weighted imaging of the head and neck at 3 T: a feasibility study on healthy human subjects and patients with head and neck cancer. NMR Biomed 27:1239–1247

    Article  PubMed  PubMed Central  Google Scholar 

  12. Kim M, Chan Q, Anthony MP, Cheung KM, Samartzis D, Khong PL (2011) Assessment of glycosaminoglycan distribution in human lumbar intervertebral discs using chemical exchange saturation transfer at 3 T: feasibility and initial experience. NMR Biomed 24:1137–1144

    Article  CAS  PubMed  Google Scholar 

  13. Haneder S, Apprich SR, Schmitt B, Michaely HJ, Schoenberg SO, Friedrich KM et al (2013) Assessment of glycosaminoglycan content in intervertebral discs using chemical exchange saturation transfer at 3.0 Tesla: preliminary results in patients with low-back pain. Eur Radiol 23:861–868

    Article  PubMed  Google Scholar 

  14. van Zijl PC, Jones CK, Ren J, Malloy CR, Sherry AD (2007) MRI detection of glycogen in vivo by using chemical exchange saturation transfer imaging (glycoCEST). Proc Natl Acad Sci U S A 104:4359–4364

    Article  PubMed  PubMed Central  Google Scholar 

  15. Cai K, Haris M, Singh A, Kogan F, Greenberg JH, Hariharan H et al (2012) Magnetic resonance imaging of glutamate. Nat Med 18:302–306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Chan KW, McMahon MT, Kato Y, Liu G, Bulte JW, Bhujwalla ZM et al (2012) Natural D-glucose as a biodegradable MRI contrast agent for detecting cancer. Magn Reson Med 68:1764–1773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Walker-Samuel S, Ramasawmy R, Torrealdea F, Rega M, Rajkumar V, Johnson SP et al (2013) In vivo imaging of glucose uptake and metabolism in tumors. Nat Med 19:1067–1072

    Article  CAS  PubMed  Google Scholar 

  18. Jones CK, Schlosser MJ, van Zijl PC, Pomper MG, Golay X, Zhou J (2006) Amide proton transfer imaging of human brain tumors at 3T. Magn Reson Med 56:585–592

    Article  PubMed  Google Scholar 

  19. Zhou J, Zhu H, Lim M, Blair L, Quinones-Hinojosa A, Messina SA et al (2013) Three-dimensional amide proton transfer MR imaging of gliomas: Initial experience and comparison with gadolinium enhancement. J Magn Reson Imaging 38:1119–1128

    Article  PubMed  Google Scholar 

  20. Zhou J, Hong X, Zhao X, Gao JH, Yuan J (2013) APT-weighted and NOE-weighted image contrasts in glioma with different RF saturation powers based on magnetization transfer ratio asymmetry analyses. Magn Reson Med 70:320–327

    Article  CAS  PubMed  Google Scholar 

  21. Ren J, Trokowski R, Zhang S, Malloy CR, Sherry AD (2008) Imaging the Tissue Distribution of Glucose in Livers Using A PARACEST Sensor. Magn Reson Med 60:1047–1055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Sagiyama K, Zhang S, Dimitrov I, Sherry AD, Takahashi M (2014) In Vivo Monitoring of Liver Glycogen by Chemical Exchange Saturation Transfer Imaging (GlycoCEST) in Live Mice. Proc Int Soc Magn Reson Med 22:0762

    Google Scholar 

  23. Bawden SJ, Mougin O, Hunter K, Marciani L, Gowland P (2014) Simultaneously Measuring Glycogen and Lipid Levels Using Localized CEST Spectroscopy at 3T. Proc Int Soc Magn Reson Med 22:3159

    Google Scholar 

  24. Abe W, Ikejima K, Lang T, Okumura K, Enomoto N, Kitamura T et al (2007) Low molecular weight heparin prevents hepatic fibrogenesis caused by carbon tetrachloride in the rat. J Hepatol 46:286–294

    Article  CAS  PubMed  Google Scholar 

  25. Sun PZ, Zhou J, Sun W, Huang J, van Zijl PC (2005) Suppression of lipid artifacts in amide proton transfer (APT) imaging. Magn Reson Med 54:222–225

    Article  CAS  PubMed  Google Scholar 

  26. Lu J, Zhou J, Cai C, Cai S, Chen Z (2015) Observation of true and pseudo NOE signals using CEST-MRI and CEST-MRS sequences with and without lipid suppression. Magn Reson Med. 73:1615--22

  27. Deng M, Zhao F, Yuan J, Ahuja AT, Wang YX (2012) Liver T1ρ MRI measurement in healthy human subjects at 3 T: a preliminary study with a two-dimensional fast-field echo sequence. Br J Radiol 85:e590–e595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zhao F, Yuan J, Deng M, Lu PX, Ahuja AT, Wang YX (2013) Further exploration of MRI techniques for liver T1rho quantification. Quant Imaging Med Surg 3:308–315

    PubMed  PubMed Central  Google Scholar 

  29. Wang YX, Yuan J, Chu ES, Go MY, Huang H, Ahuja AT et al (2011) T1rho MR imaging is sensitive to evaluate liver fibrosis: an experimental study in a rat biliary duct ligation model. Radiology 259:712–719

    Article  PubMed  Google Scholar 

  30. Wang YX, Yuan J (2014) Evaluation of liver fibrosis with T1ρ MR imaging. Quant Imaging Med Surg 4:152–155

    PubMed  PubMed Central  Google Scholar 

  31. Allkemper T, Sagmeister F, Cicinnati V, Beckebaum S, Kooijman H, Kanthak C et al (2014) Evaluation of Fibrotic Liver Disease with Whole-Liver T1ρ MR Imaging: A Feasibility Study at 1.5 T. Radiology 271:408–415

    Article  PubMed  Google Scholar 

  32. Mannelli L, Wilson GJ, Dubinsky TJ, Potter CA, Bhargava P, Cuevas C et al (2012) Assessment of the liver strain among cirrhotic and normal livers using tagged MRI. J Magn Reson Imaging 36:1490–1495

    Article  PubMed  Google Scholar 

  33. Salameh N, Larrat B, Abarca-Quinones J, Pallu S, Dorvillius I, Leclercq I et al (2009) Early detection of steatohepatitis in fatty rat liver by using MR elastography. Radiology 253:90–97

    Article  PubMed  Google Scholar 

  34. Bonekamp S, Kamel I, Solga S, Clark J (2009) Can imaging modalities diagnose and stage hepatic fibrosis and cirrhosis accurately? J Hepatol 50:17–35

    Article  PubMed  Google Scholar 

  35. Lu PX, Huang H, Yuan J, Zhao F, Chen ZY, Zhang Q et al (2014) Decreases in Molecular Diffusion, Perfusion Fraction and Perfusion-Related Diffusion in Fibrotic Livers: A Prospective Clinical Intravoxel Incoherent Motion MR Imaging Study. PLoS One 9:e113846

    Article  PubMed  PubMed Central  Google Scholar 

  36. Yoon JH, Lee JM, Baek JH, Shin CI, Kiefer B, Han JK et al (2014) Evaluation of hepatic fibrosis using intravoxel incoherent motion in diffusion-weighted liver MRI. J Comput Assist Tomogr 38:110–116

    Article  PubMed  Google Scholar 

  37. Constandinou C, Henderson N, Iredale JP (2005) Modeling liver fibrosis in rodents. Methods Mol Med 117:237–250

    PubMed  Google Scholar 

  38. Marques TG, Chaib E, da Fonseca JH, Lourenço AC, Silva FD, Ribeiro MA Jr et al (2012) Review of experimental models for inducing hepatic cirrhosis by bile duct ligation and carbon tetrachloride injection. Acta Cir Bras 27:589–594

    Article  PubMed  Google Scholar 

  39. Muriel P (1998) Nitric oxide protection of rat liver from lipid peroxidation, collagen accumulation, and liver damage induced by carbon tetrachloride-Physiology, pathophysiology and pharmacology. Biochem Pharmacol 56:773–779

    Article  CAS  PubMed  Google Scholar 

  40. Pagadala M, Kasumov T, McCullough AJ, Zein NN, Kirwan JP (2012) Role of ceramides in nonalcoholic fatty liver disease. Trends Endocrinol Metab 23:365–371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Jones CK, Huang A, Xu J, Edden RA, Schar M, Hua J et al (2013) Nuclear Overhauser enhancement (NOE) imaging in the human brain at 7T. Neuroimage 77:114–124

    Article  PubMed  Google Scholar 

  42. Jin T, Wang P, Zong X, Kim SG (2013) MR imaging of the amide-proton transfer effect and the pH-insensitive nuclear over hauser effect at 9.4 T. Magn Reson Med 69:760–770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Li L, Tang X, Taylor KG, DuPré DB, Yappert MC (2002) Conformational characterization of ceramides by nuclear magnetic resonance spectroscopy. Biophys J 82:2067–2080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ichi I, Nakahara K, Fujii K, Iida C, Miyashita Y, Kojo S (2007) Increase of ceramide in the liver and plasma after carbon tetrachloride intoxication in the rat. J Nutr Sci Vitaminol (Tokyo) 53:53–56

    Article  CAS  Google Scholar 

  45. Ling W, Regatte RR, Navon G, Jerschow A (2008) Assessment of glycosaminoglycan concentration in vivo by chemical exchange-dependent saturation transfer (gagCEST). Proc Natl Acad Sci U S A 105:2266–2270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Heo HY, Zhang Y, Lee DH, Hong X, Zhou J (2015) Quantitative assessment of amide proton transfer (APT) and nuclear Overhauser enhancement (NOE) imaging with extrapolated semi-solid magnetization transfer reference (EMR) signals: Application to a rat glioma model at 4.7 T. Magn Reson Med. doi:10.1002/mrm.25581

    Google Scholar 

  47. Chow AM, Gao DS, Fan SJ, Qiao Z, Lee FY, Yang J et al (2012) Measurement of liver T1 and T2 relaxation times in an experimental mouse model of liver fibrosis. J Magn Reson Imaging 36:152–158

    Article  PubMed  Google Scholar 

  48. Stancanello J, Terreno E, Castelli DD, Cabella C, Uggeri F, Aime S (2008) (2008) Development and validation of a smoothing-splines-based correction method for improving the analysis of CEST-MR images. Contrast Media Mol Imaging 3:136–149

    Article  CAS  PubMed  Google Scholar 

  49. Kim M, Gillen J, Landman BA, Zhou J, van Zijl P (2009) Water saturation shift referencing (WASSR) for chemical exchange saturation transfer (CEST) experiments. Magn Reson Med 61:1441–1450

    Article  PubMed  PubMed Central  Google Scholar 

  50. Sun PZ, Benner T, Kumar A, Sorensen AG (2008) Investigation of optimizing and translating pH-sensitive pulsed-chemical exchange saturation transfer (CEST) imaging to a 3T clinical scanner. Magn Reson Med 60:834–841

    Article  PubMed  Google Scholar 

  51. Zaiss M, Schmitt B, Bachert P (2011) Quantitative separation of CEST effect from magnetization transfer and spillover effects by Lorentzian-line-fit analysis of z-spectra. J Magn Reson 211:149–155

    Article  CAS  PubMed  Google Scholar 

  52. Chappell MA, Donahue MJ, Tee YK, Khrapitchev AA, Sibson NR, Jezzard P et al (2013) Quantitative Bayesian model-based analysis of amide proton transfer MRI. Magn Reson Med 70:556–567

    Article  CAS  PubMed  Google Scholar 

  53. Zaiss M, Xu J, Goerke S, Khan IS, Singer RJ, Gore JC et al (2014) Inverse Z-spectrum analysis for spillover-, MT-, and T1-corrected steady-state pulsed CEST-MRI - application to pH-weighted MRI of acute stroke. NMR Biomed 27:240–252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Zhao F, Deng M, Yuan J, Teng GJ, Ahuja AT, Wang YX (2012) Experimental evaluation of accelerated T1rho relaxation quantification in human liver using limited spin-lock times. Korean J Radiol 13:736–742

    Article  PubMed  PubMed Central  Google Scholar 

  55. Wang YX, Zhao F, Yuan J, Mok GS, Ahuja AT, Griffith JF (2013) Accelerated T1rho relaxation quantification in intervertebral disc using limited spin-lock times. Quant Imaging Med Surg 3:54–58

    PubMed  PubMed Central  Google Scholar 

  56. Yuan J, Zhao F, Griffith JF, Chan Q, Wang YX (2012) Optimized efficient liver T(1ρ) mapping using limited spin lock times. Phys Med Biol 57:1631–1640

    Article  PubMed  Google Scholar 

  57. Zhu Y, Zhang Q, Liu Q, Wang YX, Liu X, Zheng H et al (2015) PANDA- T1ρ: Integrating principal component analysis and dictionary learning for fast T1ρ mapping. Magn Reson Med. 73:263–272

  58. Sun PZ, Wang E, Cheung JS, Zhang X, Benner T, Sorensen AG (2011) Simulation and optimization of pulsed radio frequency (RF) irradiation scheme for chemical exchange saturation transfer (CEST) MRI - demonstration of pH-weighted pulsed-amide proton CEST MRI in an animal model of acute cerebral ischemia. Magn Reson Med 66:1042–1048

    Article  PubMed  PubMed Central  Google Scholar 

  59. Zu Z, Li K, Janve VA, Does MD, Gochberg DF (2011) Optimizing Pulsed-Chemical Exchange Saturation Transfer (CEST) Imaging Sequences. Magn Reson Med 66:1100–1108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors also thank two reviewers for their insightful comments, and Dr Weitian Chen for image processing during the revision process.

The scientific guarantor of this publication is Dr Yi-Xiang Wang. Dr Juan Wei is an employee of Philips Healthcare. The other authors declare no conflict of interest.

This study was partially by grants from the Research Grants Council of the Hong Kong SAR (Project No 476313 Project No. SEG_CUHK02) and the National Institutes of Health (R01EB009731, R01CA166171). No complex statistical methods were necessary for this paper. Institutional Review Board approval was obtained. Written informed consent was obtained from all subjects in this study. Approval from the institutional animal care committee was obtained. No study subjects or cohorts have been previously reported.

Methodology: experimental, performed at one institution.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yì-Xiáng J. Wáng.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplement Fig 1

CEST images demonstrates rat liver position remained consistent during the data acquisition at different offsets. (GIF 1167 kb)

High Resolution Image (TIFF 3254 kb)

Supplement Fig 2

Representative B0 map of a rat with 5 ROIs selected. (GIF 656 kb)

High Resolution Image (TIFF 461 kb)

Supplement Fig 3

Representative B0 map of a human subject with 5 ROIs selected. (GIF 1054 kb)

High Resolution Image (TIFF 1417 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, SZ., Yuan, J., Deng, M. et al. Chemical exchange saturation transfer (CEST) MR technique for in-vivo liver imaging at 3.0 tesla. Eur Radiol 26, 1792–1800 (2016). https://doi.org/10.1007/s00330-015-3972-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-015-3972-0

Keywords

Navigation